问题描述
https://leetcode.com/problems/unique-paths/#/description
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 3 x 7
grid. How many possible unique paths are there?
Note: m and n will be at most 100
.
算法
动态规划解题f(i,j)
,i<m
,j<n
为从左上角到(i,j)
的方法,则有:
f(0,j) = 1
,0<=j<n
,第一行的各个位置均只有一条路径,即一直向右走f(i,0) = 1
,0<=i<m
,第一列的也只有一条路径,即一直往下走f(i,j) = f(i-1,j) + f(i, j-1)
,i>=1 & j>=1
,其它位置直接来源有两条,一个是上面的往下走,一个是左边的往右走
代码
public int uniquePaths(int m, int n) {
if(m<=0 || n<=0) return 0;
int[][] f = new int[m][n];
for(int i=0;i<m;i++) {
f[i][0] = 1;
}
for(int j=0;j<n;j++) {
f[0][j] = 1;
}
for(int i=1;i<m;i++) {
for(int j=1;j<n;j++) {
f[i][j] = f[i-1][j] + f[i][j-1];
}
}
return f[m-1][n-1];
}