问题描述
https://leetcode.com/problems/edit-distance/#/description
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
将word1变为word2,可以有三种操作,删除、替换、增加一个字符,每执行一次算作一次操作,返回至少需要多少次操作。
算法
使用动态规划,设f(i,j)表示将word1的前i个字符转化为word2的前j个字符,设n=word1.length(), m=word2.length(),则最终的结果就是求:f(n, m)
下面是动态转移方程:
- 初始条件,
f(0,k) = f(k,0) = k,f(0,k)=k表示将word1的前0个字符转换为word2的前k个字符所需操作数,因为是从0个字符变换为k个字符,自然需要k次操作 word1[i] = word2[j]时,有f(i,j) = f(i-1,j-1),因为此时不需要操作,所以操作次数与前面的变换次数相等word2[i] != word2[j]时,有f(i,j) = 1 + min{f(i,j-1),f(i-1,j),f(i-1,j-1)},f(i,j-1)表示insert,f(i-1,j)表示delete,f(i-1,j-1)表示replace
时间复杂度O(nm)
代码
public class Solution {
/**
* 将word1变为word2,可以有三种操作,删除、替换、增加一个字符,每执行一次算作一次操作,返回至少需要多少次操作。
* 算法:
* 使用动态规划,设f(i,j)表示将word1的前i个字符转化为word2的前j个字符,设n=word1.length(), m=word2.length(),则最终的结果就是求:f(n, m)
* 下面是动态转移方程:
* 1. 初始条件,f(0,k) = f(k,0) = k,f(0,k)=k表示将word1的前0个字符转换为word2的前k个字符所需操作数,因为是从0个字符变换为k个字符,自然需要k次操作
* 2. word1[i] = word2[j]时,有f(i,j) = f(i-1,j-1),因为此时不需要操作,所以操作次数与前面的变换次数相等
* 3. word2[i] != word2[j]时,有f(i,j) = 1 + min{f(i,j-1), f(i-1,j), f(i-1,j-1)},f(i,j-1)表示insert, f(i-1,j)表示delete,f(i-1,j-1)表示replace
*/
public int minDistance(String word1, String word2) {
int n = word1.length();
int m = word2.length();
int[][] f = new int[n+1][m+1];
for(int i=0;i<=m;i++) {
f[0][i] = i;
}
for(int i=0;i<=n;i++) {
f[i][0] = i;
}
for(int i=1;i<=n;i++) {
for(int j=1;j<=m;j++) {
if(word1.charAt(i-1) == word2.charAt(j-1)) {
f[i][j] = f[i-1][j-1];
} else {
f[i][j] = 1 + Math.min(f[i][j-1], Math.min(f[i-1][j], f[i-1][j-1]));
}
}
}
return f[n][m];
}
}