导数:
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数
y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
微分:
微分在数学中的定义:由函数
B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。
导数和微分的区别
导数和微分的区别一个是比值、一个是增量。
导数是函数图像在某一点处的斜率,也就是纵坐标增量(
Δy)和横坐标增量(Δx)在Δx-->0时的比值。
微分是指函数图像在某一点处的切线在横坐标取得增量Δx以后,纵坐标取得的增量,一般表示为dy。所以二者有本质区别。
偏导数
一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。