问题描述
https://leetcode.com/problems/unique-paths-ii/#/description
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1
and 0
respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3
grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2
.
Note: m
and n
will be at most 100
.
算法
设f(i,j)
是从(0,0)
到(i,j)
的路径数
同Unique Paths差不多,只是多了一个障碍物的判断
f(0,0) = (0,0) is obstacles ?0:1
f(0,j) = (0,j) is obstacles ?0:f(0,j-1), 0<j<n
f(i,0) = (i,0) is obstacles ?0:f(i-1,0), 0<i<m
f(i,j) = (i,j) is obstacles ?0:f(i-1,j) + f(i, j-1), i>=1 & j>=1
代码
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
int m = obstacleGrid.length;
if(m==0) return 0;
int n = obstacleGrid[0].length;
if(n==0) return 0;
int[][] f = new int[m][n];
f[0][0] = obstacleGrid[0][0]==1?0:1;
// 第一行
for(int j=1;j<n;j++) {
f[0][j] = obstacleGrid[0][j]==1?0:f[0][j-1];
}
// 第一列
for(int i=1;i<m;i++) {
f[i][0] = obstacleGrid[i][0]==1?0:f[i-1][0];
}
for(int i=1;i<m;i++) {
for(int j=1;j<n;j++) {
f[i][j] = obstacleGrid[i][j]==1?0:f[i-1][j] + f[i][j-1];
}
}
return f[m-1][n-1];
}